An ab Initio Molecular Orbital Study of the Mechanism of the Rhodium(I)-Catalyzed Olefin Hydroboration Reaction

Djamaladdin G. Musaev, ${ }^{\dagger}$ Alexander M. Mebel, ${ }^{\ddagger, 8}$ and Keiji Morokuma ${ }^{*}, \neq, \delta$
Contribution from the Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Institute Molecular Science, Myodaiji, Okazaki 444, Japan

Received June 14, 1994^{*}

Abstract

Potential energy surfaces of the rhodium(I)-catalyzed olefin hydroboration reactions, $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HB}-$ $(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}(1)$ and $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5}-$ $\mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ (2), have been studied by using ab initio molecular orbital method at the MP2/ECP +DZ level. The following mechanisms have been considered: (I) oxidative addition of a $\mathrm{B}-\mathrm{H}$ bond to the metal center, followed by olefin coordination to the complex in various positions without dissociation of PH_{3} group, further followed by insertion of olefin into either $\mathrm{M}-\mathrm{H}$ or $\mathrm{M}-\mathrm{B}$ bond and reductive elimination of $\mathrm{B}-\mathrm{C}$ or $\mathrm{B}-\mathrm{H}$ bond, respectively and (II) coordination of olefin to the metal center, followed by " σ-bond metathesis" involving coordination of borane and simultaneous cleavage of the $\mathrm{M}-\mathrm{C}$ and $\mathrm{B}-\mathrm{H}$ bonds with formation of the $\mathrm{M}-\mathrm{B}$ and $\mathrm{H}-\mathrm{C}$ or $\mathrm{M}-\mathrm{H}$ and $\mathrm{B}-\mathrm{C}$ bonds. For both reactions, the most favorable mechanism is shown to involve oxidative addition of borane to the catalyst and coordination of $\mathrm{C}_{2} \mathrm{H}_{4}$ to the complex between B and H ligands trans to Cl , followed by insertion of $\mathrm{C}=\mathrm{C}$ into the $\mathrm{Rh}-\mathrm{B}$ bond. The reactions are completed by dehydrogenative reductive elimination of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}$ which is calculated to be the rate determining step and to have the barriers of 22.4 and $20.8 \mathrm{kcal} / \mathrm{mol}$ for eqs 1 and 2 , respectively. Other competitive mechanisms involve as the rate-controlling step the " σ-bond metathesis" to break $\mathrm{B}-\mathrm{H}$ and to form $\mathrm{M}-\mathrm{H}$ and $\mathrm{B}-\mathrm{C}$ bonds after formation of the $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ complex, with the barrier of 23.9 $\mathrm{kcal} / \mathrm{mol}$ for reaction 1 .

I. Introduction

The discovery of transition-metal-catalyzed olefin hydroboration using catecholborane (1,3,2-benzodioxaborole, abbreviated as CB or HBcat where cat $=1,2-\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) and $4,4,6$ -trimethyl-1,3,2-dioxaborinane (TMDB) has led to the development of applications in organic synthesis and increased the potential applications of boron hydrides in synthetic organic chemistry. ${ }^{1-4}$ This process has demonstrated a variety of promising features, including regio-, diastereo-, and chemoselectivity, ${ }^{1-4}$ as well as preferential addition to $\mathrm{C}=\mathrm{C}$ bonds in the presence of more reactive functional groups such as ketones and nitriles. ${ }^{1}$ In general, it has been found that (1) the reductive elimination step is the slowest step in the overall transformation; (2) rhodium complexes are most suitable catalysts, among those the Wilkinson catalyst appears to be the most efficient, while the Crabtree's iridium complex, ${ }^{5}\left[\operatorname{Ir}(\operatorname{cod})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{py}^{2}\right)\right] \mathrm{PF}_{6}$, is a noteworthy exception in this generalization; (3) boron hydrides bearing oxygen ligands are the most successful reagents, while attempts to catalyze hydroboration of 1-decene with most boron hydrides including bis(benzyloxy)borane, bis(trifluoroacetoxy)borane, tetramethylammonium triacetoxyborohydride, and thexylbornane were unsuccessful; and (4) the rate of the catalyzed hydroboration reaction is very sensitive to the olefin substitution pattern, with terminal alkenes more reactive than highly substituted olefins. ${ }^{2.3 \mathrm{~d}}$

While significant efforts have been focused on the catalyzed hydroboration reactions as a synthetic method, only few investigations have concentrated on the fundamental under-

[^0]standing of elementary steps in the catalytic cycle and the role of transition metal atoms and substrates. ${ }^{2.3 \mathrm{~b}, \mathrm{e}, \mathrm{w}, 4}$ The mechanism proposed in early papers ${ }^{1-3 e}$ for the Wilkinson catalyst involves oxidative addition of a $\mathrm{B}-\mathrm{H}$ bond to the metal center, followed by olefin coordination to the metal center accompanied with

[^1]Scheme 1. All Possible Mechanisms for Olefin Hydroborations Mediated by $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{2}$

dissociation of one of the two PPh_{3}, further followed by migratory insertion of olefin into the $\mathrm{M}-\mathrm{H}$ bond and subsequent reductive elimination of the $\mathrm{B}-\mathrm{C}$ bond.

Several important questions have been raised concerning this mechanism. First, the phosphine was assumed ${ }^{1}$ to dissociate upon olefin coordination and to readd to the complex during one of the next steps. However, Burgess and co-workers later ${ }^{4 c}$ suggested a mechanism which does not include PPh_{3} dissociation. Hence, whether the reaction occurs with phosphine dissociation or not, need to be clarified. Second, Baker and co-workers have recently demonstrated" a competitive "dehydrogenative borylation" pathway involving insertion of alkene into the $\mathrm{M}-\mathrm{B}$ bond and reductive elimination from the resulting borylalkylmetal complex for the reaction of the bis(boryl) complex $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}(\mathrm{Bcat})_{2}$ with 4 -vinylanisole. This pathway has also been suggested by recent observations of vinyl boronate esters in several metal-catalyzed olefin hydroborations. ${ }^{3 n, 4 \mathrm{c}, 6}$ It would be interesting to elucidate whether $\mathrm{M}-\mathrm{B}$ or $\mathrm{M}-\mathrm{H}$ bond

[^2]insertion of olefin is more favorable energetically. Third, the latest study of Hartwig and co-workers ${ }^{8}$ for the reaction of HB cat addition to $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}$ complex suggests another possible competitive " σ-bond metathesis" pathway involving coordination of the HBcat to the complex, followed by simultaneous cleavage of the $\mathrm{M}-\mathrm{CH}_{3}$ and $\mathrm{B}-\mathrm{H}$ bonds with formation of the $\mathrm{Ru}-\mathrm{H}$ and $\mathrm{B}-\mathrm{C}$ bonds through a four-center transition state. These proposed mechanisms of the rhodium(I)-catalyzed olefin hydroboration are shown in Scheme 1.

Thus, detailed experimental and theoretical studies are highly desirable on the mechanism of the transition-metal-catalyzed olefin hydroboration reactions as well as on the role of the transition metal center, substrates, and electronic and steric factors in the mechanism. Quantum chemical calculations on the structure and stability of varieties of intermediates and transition states would be extremely useful.

In the present paper, we present the first detailed ab initio molecular orbital study of possible reaction pathways illustrated in Scheme 1, excluding the pathways involving elimination of

[^3] 116, 1839.

Chart 1. Schematic Representation of d-Orbital Levels for $\mathrm{d}^{8} \mathrm{ML}_{3}$ and $\mathrm{d}^{6} \mathrm{ML}_{5}$

one of the phosphine ligands after olefin coordination. We will study the structure and stability of many intermediates and transition states of the hydroboration reactions of $\mathrm{C}_{2} \mathrm{H}_{4}$ with the model boranes $\mathrm{HB}(\mathrm{OH})_{2}$ and $\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ involving the model Wilkinson catalyst $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$. After the brief section II on the method, we describe results of studies for substrate $\mathrm{HB}(\mathrm{OH})_{2}$ and $\mathrm{HB}\left(\mathrm{CH}_{2}\right)_{3}$, in sections III and IV, respectively. Section V is the concluding remarks.

II. Calculation Procedure

All the geometries of reactants, intermediates, and transition states have been optimized by the gradient technique with the second order Møller-Plesset perturbation (MP2) method. For the Rh atom the 4 s 4 p 4 d 5 s electrons are explicitly considered with the relativistic effective core potential (RECP), ECP17, and the standard ($5 \mathrm{~s} 5 \mathrm{p} 4 \mathrm{~d} / 3 \mathrm{~s} 3 \mathrm{p} 2 \mathrm{~d}$) basis set. ${ }^{9}$ For the P and Cl atoms only the valence 3 s 3 p shells are explicitly considered with the ECP and the ($3 \mathrm{~s} 3 \mathrm{p} / 2 \mathrm{~s} 2 \mathrm{p}$) basis set. ${ }^{10}$ For other atoms the standard $6-31 \mathrm{G}$ basis set ${ }^{11}$ is employed. The Gaussian 92 program ${ }^{12}$ has been used.

The structure and stability of the active catalytic species $\mathrm{RhCl}-$ $\left(\mathrm{PH}_{3}\right)_{2}$ has been studied in detail by Koga and Morokuma. ${ }^{13}$ In general, it has been found that (1) using the notation of Chart 1 , the ground state of this d^{8} complex is a triplet ${ }^{3} \mathrm{~A}_{1}\left[\left(\mathrm{~b}_{1}\right)^{2}\left(\mathrm{a}_{2}\right)^{2}\right.$ $\left.\left(b_{2}\right)^{2}\left(a_{1}\right)^{1}\left(a_{1}\right)^{1}\right]$, followed by the closed shell singlet ${ }^{1} A_{1}\left[\left(b_{1}\right)^{2}\right.$ $\left.\left(a_{2}\right)^{2}\left(b_{2}\right)^{2}\left(a_{1}\right)^{2}\right]$, and the open shell singlet ${ }^{1} \mathrm{~A}_{1}\left[\left(b_{1}\right)^{2}\left(a_{2}\right)^{2}\left(b_{2}\right)^{2}-\right.$ $\left.\left(a_{1}\right)^{1}\left(a_{1}\right)^{1}\right]$, in the order of increasing energy within a range of $15 \mathrm{kcal} / \mathrm{mol}$ or so ; (2) in the triplet state the $\mathrm{Rh}-\mathrm{Cl}$ and $\mathrm{Rh}-\mathrm{P}$ bonds are longer by $0.1 \AA$ than in the closed shell singlet; (3) the use of the effective core potential, ECP9, where only 4d5s electrons but not 4 s 4 p electrons are explicitly considered for Rh atom, overestimates the electron correlation energy; and (4) the ECP17 tends to give the Rh-ligand bonds too long by $0.03-$ $0.08 \AA$.

The geometry optimization for $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ (a0) carried out in this paper at the MP2 level under the C_{s} symmetry constraint,

[^4]Table 1. Energies ${ }^{a}$ (at the MP2 Level) for Reactants,
Intermediates, Transition States, and Products of the Reaction
$\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HBR}+\mathrm{C}_{2} \mathrm{H}_{4}$

species $^{\text {b }}$	$\mathrm{R}=(\mathrm{OH})_{2} \mathrm{a}$	$\mathrm{R}=\mathrm{O}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~b}$
$\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$	-139.77794	
HBR	-176.47352	-292.59408
$\mathrm{C}_{2} \mathrm{H}_{4}$	-78.18420	
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}$	-254.70845	-370.83236
$\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HBR}+\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{O}$	0.0	0.0
$\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2} \mathrm{HBR}+\mathrm{C}_{2} \mathrm{H}_{4}, 1$	-47.1	-15.6
2, EQ	-47.2	-48.9
3, TS	-40.7	
4 , TS for CH_{3} rot.	-75.3	
5, EQ	-76.5	
6, second order top	-27.6	
7, TS	-29.8	
$\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}, 8, \mathrm{EQ}$	-31.8	-33.9
9, TS	-46.6	-42.9
10, TS for $\mathrm{B}(\mathrm{OH})_{2}$ rot.	-66.8	-69.4
10^{\prime}, EQ	-67.8	
11, TS for $\mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ rot.	-60.0	
12, TS	-45.4	-48.6
12', second order top	-31.2	
13, second order top	-40.0	
14, TS for $\mathrm{B}(\mathrm{OH})_{2}$ rot.	-48.5	-51.6
14', EQ	-52.6	
15, TS for $\mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ rot.	-44.0	
16, EQ	-71.0	
17, TS	-14.5	
18	-66.1	
19, EQ	-67.1	
20, TS	-29.5	
21, EQ	-55.0	
$\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HBR}, 22, \mathrm{EQ}$	-53.4	-53.4

${ }^{a}$ Total energies (italic, in hartree) are given only for reactants, products, and reference structures and relative energies (in $\mathrm{kcal} / \mathrm{mol}$) are given for other structures. ${ }^{b}$ Frequency analysis has not been performed, and the estimated number of imaginary frequencies based on comparison of energies for different conformations (see text for more details).
gave the $C_{2 \nu}$ structure with the $\mathrm{Rh}-\mathrm{Cl}, \mathrm{Rh}-\mathrm{P}$, and $\mathrm{P}-\mathrm{H}$ bond lengths of $2.384,2.394$, and $1.418 \AA$, respectively, and with the bond angle $\angle \mathrm{ClRhP}$ of 86.9°, which are in good agreement with those obtained by Koga and Morokuma ${ }^{13}$ at the RHF level with the similar basis sets. ${ }^{13}$

As pointed out by Koga and Morokuma, ${ }^{13}$ we expect that the closed shell singlet state becomes the ground state as soon as $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ interacts with other ligands and also in the d^{6} RhL_{5} complex, as illustrated in Chart 1. Therefore, we study only the overally singlet state for the present olefin hydroboration reactions.

III. Catalytic Hydroboration of $\mathrm{C}_{2} \mathbf{H}_{4}$ by $\mathbf{H B}(\mathbf{O H})_{2}$

In this section we consider the catalytic reaction:

$$
\begin{align*}
\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HB}(\mathrm{OH})_{2}+ & \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \\
& \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2} \tag{1}
\end{align*}
$$

The substrate $\mathrm{HB}(\mathrm{OH})_{2}$ is a realistic model of borane having oxygen ligands for the experimental catecholborane (CB) or 4,4,6-trimethyl-1,3,2-dioxaborinane (TMDB). The first step of the catalytic cycle, after the active catalytic species $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ is generated, should be the addition of either (I) borane or (II) $\mathrm{C}_{2} \mathrm{H}_{4}$ to the active catalyst. We consider these two mechanisms separately.

Mechanism I: Initial Addition of Borane. At first we will examine the mechanism in which borane makes the first addition to the active catalyst. After the oxidative addition of the borane to the active catalyst, $\mathrm{C}_{2} \mathrm{H}_{4}$ can, in principle, coordinate to the

Table 2. MP2 Optimized Geometries (Distances in \AA, Angles in deg) for Reactants, Intermediates, Transition States, and Products of the Reaction $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HBR}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}\left(\right.$ Where $\mathrm{R}=(\mathrm{OH})_{2}$ and $\left.\mathrm{O}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$

	RhCl	RhP	CIRhP	RhH	RhB	BH	ClRhH	CIRhB	BO	OBO	RhC^{1}	RhC^{2}	$\mathrm{C}^{1} \mathrm{RhC}^{2}$	$\mathrm{C}^{1} \mathrm{C}^{2}$	$\mathrm{C}^{1} \mathrm{H}$	$\mathrm{C}^{2} \mathrm{~B}$	HRhC	BRhC
a0	2.384	2.394	86.9			1.185			1.399	121.4				1.351				
a1	2.448	2.369	89.4	1.583	2.056	1.995	147.7	147.2	${ }^{8} 1.423$	118.9								
	2.418	2.338	87.8		1.961			137.5	1.430	107.90								
a2	2.471	2.339	86.8	1.690	2.142		85.4	80.8	1.422	120.0	2.124	2.161	40.0	1.467	2.520	2.527	81.9	71.9
a3	2.474	2.339	86.0	1.735	2.110		90.4	89.4	1.425	118.5	2.218	2.135	39.3	1.467	1.782	2.975	51.9	89.0
a4	2.478	2.359	89.1	2.544	2.013		94.8	127.7	1.424	119.9	2.816	2.112	33.0	1.552	1.108	2.692	23.1	81.4
a5	2.474	2.357	89.1		2.015		128.0	128.1	1.423	120.1	2.897	2.125	31.2	1.542	1.104	2.633	6.3	78.9
$a 6$	2.419	2.363	86.4	2.396	2.207		107.1	140.5	1.424	123.7	2.707	2.163	36.4	1.607	1.099	1.920	23.9	52.1
a7	2.418	2.363	86.3		2.198		137.8	140.5	1.424	123.7	2.748	2.170	35.2	1.587	1.103	1.919	5.7	52.1
a8	2.384	2.394	86.9						1.409	123.0				1.560	1.099	1.577		
a9	2.506	2.346	87.5	1.652	2.151		84.4	79.5	1.419	121.6	2.110	2.213	40.2	1.489	2.861	2.106	98.3	57.7
a10	2.501	2.361	90.4	1.569	2.845		142.7	82.7	1.408	124.1	2.152	2.987	30.2	1.562	2.263	1.586	73.0	31.4
a10'	2.556	2.355	88.8	1.568	3.066		106.6	107.4	1.411	123.5	2.113	3.022	29.3	1.569	2.553	1.587	86.5	30.2
a11	2.484	2.360	89.9	1.577			147.1	116.9	1.406	123.8	2.128	2.920	31.0	1.549	2.267	1.582	73.8	8.8
$a 12$	2.417	2.364	88.2	1.634	2.721		163.5	96.0	1.416	123.0	2.285	2.897	33.2	1.588	1.324	1.591	34.7	32.7
a12'	2.428	2.358	87.0	1.640	3.219		158.7	112.6	1.396	123.0	2.381	3.106	29.9	1.581	1.254	1.590	29.7	29.0
a13	2.413	2.360	87.2	1.624			160.0	138.6	1.407	123.7	2.287	2.885	32.8	1.570	1.345	1.582	35.3	6.5
a14	2.393	2.375	87.4	1.798	2.907		176.9	110.7	1.413	123.6	2.752	3.299	28.3	1.570	1.126	1.589	15.4	28.8
a14'	2.400	2.380	87.2	2.227	3.511		118.3	193.2	1.436	118.9	3.319	3.981	22.5	1.565	1.099	1.580	2.7	23.3
$a 15$	2.395	2.375	86.5	1.830			168.0	140.4	1.406	123.8	2.690	3.085	30.3	1.559	1.134	1.582	19.2	3.1
a16	2.522	2.347	91.0	1.598	2.062	2.412		86.2	1.419	119.3	2.450	2.427	32.9	1.382	2.660		79.1	
a17	2.428	2.378	88.1	1.972	2.253	1.574		80.7	1.415	123.1	2.355	2.146	38.6	1.499	1.394		36.2	
a18	2.474	2.368	88.9	3.308	2.002	2.417		110.1	1.421	120.0	3.285	2.141	23.0	1.557	1.095		19.1	
a19	2.540	2.342	89.4	1.597	2.059	2.359	86.3		1.424	118.9	2.311	2.339	35.0	1.400		2.787		78.4
a20	2.453	2.353	91.0	1.639	2.353	2.301	133.9		1.428	121.2	2.252	2.555	34.7	1.464		1.807		43.0
221	2.497	2.371	86.5	1.575	3.335	2.342	173.5		1.410	123.8	2.158	3.229	24.4	1.546		1.580		27.8
a22	2.425	2.358	87.5			1.197			1.197	120.0	2.132	2.132	38.8	1.452				
b0	2.384	2.394	86.9			1.189			1.392	123.1				1.351				
b1	2.487	2.400	91.0	1.609	2.050	2.155	165.0	124.0	1.402	121.2								
b2	2.475	2.337	87.0	1.691	2.142		85.6	79.7	1.409	120.6	2.122	2.161	40.1	1.469	2.556	2.501	83.5	71.1
b9	2.568	2.401	86.6	1.610	2.189		84.4	80.8	1.401	121.7	2.100	2.249	40.1	1.497	2.857	2.047	99.8	54.9
b10	2.502	2.360	90.1	1.564	2.842		133.1	90.7	1.399	122.6	2.139	2.959	30.5	1.558	2.273	1.593	73.9	31.8
b12	2.421	2.361	88.2	1.629	2.728		160.5	98.9	1.405	122.4	2.286	2.902	32.9	1.585	1.332	1.595	34.9	32.7
b14	2.396	2.374	88.1	1.784	2.865		174.7	109.2	1.403	122.7	2.700	3.224	29.1	1.570	1.131	1.594	17.4	29.6
b8	2.384	2.394	86.9						1.410	119.3				1.560	1.099	1.580		

${ }^{a}$ Experimental results were given in italics for $\mathrm{RhHCl}(\mathrm{Bcat})\left(\mathrm{PPr}^{\mathrm{i}}\right)_{2} .{ }^{3 v}$
complex from three different directions: (I.1) between B and H ligands, trans to the Cl atom, (I.2) between H and Cl atoms, trans to \mathbf{B}, and (I.3) between B and Cl atoms, trans to H . In the case I.1, the reaction can proceed via two distinct pathways: (I.1.A) insertion of $\mathrm{C}=\mathrm{C}$ into the $\mathrm{Rh}-\mathrm{H}$ bond followed by reductive elimination of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ by coupling of $\mathrm{CH}_{2}-$ CH_{3} and $\mathrm{B}(\mathrm{OH})_{2}$ and (I.1.B) insertion of $\mathrm{C}=\mathrm{C}$ into the $\mathrm{Rh}-\mathrm{B}$ bond followed by reductive elimination of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ by coupling of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ and H . In the path I .2 , the $\mathrm{C}=\mathrm{C}$ bond has to insert first into the neighboring $\mathrm{Rh}-\mathrm{H}$ bond, and isomerization of the intermediate complex is necessary for further reductive elimination of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ by coupling of $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{B}(\mathrm{OH})_{2}$. In the path I .3 , only the $\mathrm{Rh}-\mathrm{B}$ bond is available for insertion of $\mathrm{C}=\mathrm{C}$, followed by isomerization of the intermediate and subsequent reductive elimination by coupling of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ and H .

Thus, we have to consider four different mechanisms of the reaction (1) after oxidative addition of the borane to the active catalyst. Energies and geometries for the reactants, intermediates, transition states (TSs), and products of the reaction (a0a21) are shown in Tables 1 and 2, respectively. The species through the mechanism I.1.A (a0-a8) are illustrated in Figure 1, and those for the mechanism I.1.B (a1, a9-a15, a8) are shown in Figure 2. The intermediates and transition states for the mechanism I.2 (a16-a18) and I.3 (a19-a21) are presented in Figure 3. The overall profiles of the potential energy surfaces (PESs) for all these mechanisms are shown in Figure 4.

Oxidative Addition of $\mathrm{HB}(\mathrm{OH})_{2}$ to $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$. The calculation showed the oxidative addition to occur without any activation barrier. Despite careful search, we could not find the coordination complex, $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{HB}(\mathrm{OH})_{2}\right]$, where the
$\mathrm{B}-\mathrm{H}$ bond is preserved and the $\mathrm{HB}(\mathrm{OH})_{2}$ ligand occupies a single coordination site. One can safely say that breakage of the $\mathrm{B}-\mathrm{H}$ bond and formation of $\mathrm{Rh}-\mathrm{H}$ and $\mathrm{Rh}-\mathrm{B}$ bonds occur without barrier. In the experimental situation, the active catalyst is actually solvated and stabilized, and an energy of desolvating may give rise to an activation barrier.

We have found only one oxidative addition product, $\mathrm{RhHCl}-$ $\left[\mathrm{B}(\mathrm{OH})_{2}\right]\left(\mathrm{PH}_{3}\right)_{2}$, (a1) as shown in Figure 1. Geometry of al was optimized without any symmetry constraint and converged to C_{s} symmetry, with $\mathrm{Rh}, \mathrm{Cl}, \mathrm{B}$, and H atoms on the symmetry plane, while OH and PH_{3} groups are reflected by this plane. The Rh atom in al has a nearly trigonal bipyramidal environment, with two axial phosphines and equatorial Cl, H, and $\mathrm{B}(\mathrm{OH})_{2}$. Optimization under C_{s} symmetry constraint starting with equatorial phosphines converged to the structure (a1) and the addition to give equatorial phosphines cannot take place. Since al has C_{s} symmetry, we perform optimization of all other structures within C_{s} symmetry unless otherwise mentioned. Two equatorial bond angles, $\angle \mathrm{ClRhH}$ and $\angle \mathrm{ClRhB}$, are about 147°, while the third, $\angle \mathrm{BRhH}$, is much smaller, 65°; the equatorial ligands are Y -shaped, with Cl at the bottom of " Y ". For a d^{8} five-coordinate complex, the Y-shaped equatorial structure with the single poorest donor at the bottom of " Y " is in general preferred, ${ }^{14}$ and the present result is consistent with this trend. The calculated structure of al can be compared with the experimental X-ray structure of $\left.\mathrm{RhHCl}(\mathrm{Bcat})\left(\mathrm{PPr}^{\mathrm{i}}\right)_{2}\right)^{3 \mathrm{~V}}$ As shown in Table 2, the agreement is satisfactory; the difference in $\mathrm{Rh}-\mathrm{Cl}, \mathrm{Rh}-\mathrm{P}$, and $\mathrm{B}-\mathrm{O}$ distances is about $0.03 \AA$, the $\mathrm{Rh}-\mathrm{B}$ bond length is $0.09 \AA$ longer than the experiment, and

[^5] Chem. Soc. 1988, 110, 3773.

Figure 1. The critical structures of the I.1.A mechanism of the reaction $\mathrm{HB}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2} . \mathrm{EQ}$, TS, and SOT stand for equilibrium, transition state, and second order top geometries, with parentheses indicating that one of the estimated imaginary frequencies is not related to the reaction.
calculated and observed $\angle \mathrm{PRhCl}$ angles differ only by about 1°. Our $\angle \mathrm{CIRhB}$ angle is 10° larger than the experiment; we do not know at the moment the reason for this discrepancy.

The exothermicity of the oxidative addition of $\mathrm{HB}(\mathrm{OH})_{2}$ to $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ is calculated to be $47.1 \mathrm{kcal} / \mathrm{mol}$ at the MP2/I// MP2/I level. However, this number might be overestimated by several $\mathrm{kcal} / \mathrm{mol}$ because of basis set superposition error. ${ }^{15-17}$

Mechanism I.1.A. Coordination of ethylene to $\mathrm{Rh}(\mathrm{H}) \mathrm{Cl}-$ $\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{~B}(\mathrm{OH})_{2}\right](\mathbf{a 1})$ between H and $\mathrm{B}(\mathrm{OH})_{2}$ ligands gives the complex $\mathrm{Rh}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{~B}(\mathrm{OH})_{2}\right]\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathbf{a} 2)$. The rhodium atom in $\mathbf{a} \mathbf{2}$ is six-coordinated and has nearly an octahedral environment. The $\angle \mathrm{ClRhB}$ and $\angle \mathrm{ClRhH}$ angles are reduced to 80.8° and 85.4°, respectively, and $\angle \mathrm{BRhX}$ and $\angle \mathrm{HRhX}$ angles, where X is the center of the $\mathrm{C}=\mathrm{C}$ bond, are in the range of $90-100^{\circ}$. The $\mathrm{Rh}-\mathrm{H}$ and $\mathrm{Rh}-\mathrm{B}$ bond lengths are elongated by about $0.1 \AA$, relative to a1. The $\mathrm{C}-\mathrm{C}$ bond is $1.467 \AA$, stretched by $0.12 \AA$ as compared to the free $\mathrm{C}_{2} \mathrm{H}_{4}$ molecule and close to those in metallocycle structures. ${ }^{18}$ The $\mathrm{Rh}-\mathrm{C}^{1}$ and $\mathrm{Rh}-\mathrm{C}^{2}$ distances are 2.124 and $2.161 \AA$, respectively, which also are close to those for $\mathrm{Rh}-\mathrm{C}$ covalent bond. ${ }^{18}$ Thus, $\mathbf{a} 2$ has a metallocycle structure.

The binding energy $\mathrm{Rh}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{~B}(\mathrm{OH})_{2}\right]\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathbf{a} 2) \rightarrow$ $\mathrm{Rh}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{~B}(\mathrm{OH})_{2}\right]+\mathrm{C}_{2} \mathrm{H}_{4}$ is calculated to be only 0.1 $\mathrm{kcal} / \mathrm{mol}$, a surprising small value. The reason of this is that the attack of the $\mathrm{C}_{2} \mathrm{H}_{4}$ to al between H and $\mathrm{B}(\mathrm{OH})_{2}$ ligands is

[^6]

Figure 2. The critical structures of the I.1.B mechanism of the reaction $\mathrm{HB}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$. See Figure 1 for notation.
highly unfavorable. In order to find the origin of the small binding energy, we divide this binding energy ΔE into three parts:

$$
\begin{equation*}
\Delta E=\operatorname{DEF}(\mathbf{a} 1)+\operatorname{DEF}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)+\mathrm{INT} \tag{2}
\end{equation*}
$$

DEFs are energies required to deform the reactant fragments, a1 and $\mathrm{C}_{2} \mathrm{H}_{4}$, from their respective equilibrium geometries to the geometries in the product complex $\mathbf{a} \mathbf{2}$. INT is the interaction energy between the deformed fragments. Table 3 shows that the energy required to open the narrowest angle of Y to make it a T shape is extremely large ($66 \mathrm{kcal} / \mathrm{mol}$), compared to those required to open the wider angle fo Y to make a T to be discussed later with the product a16 and a19. Since the product $\mathbf{a} 2$ is a metallocycle, the interaction energy INT is large in magnitude but cannot compensate the large DEF.

The reaction proceeds further via migratory insertion of the $\mathrm{C}=\mathrm{C}$ bond into the $\mathrm{Rh}-\mathrm{H}$ bond through TS (a3), which is an early transition state, in accord with high exothermicity of the $\mathrm{a} 2 \rightarrow \mathrm{a} 3 \rightarrow \mathrm{a} 4$ process. Table 2 shows that the $\mathrm{Rh}-\mathrm{H}$ bond in a3 is only $0.045 \AA$ longer than in $\mathbf{a} \mathbf{2}$, and the $\mathrm{C}-\mathrm{C}$ distance has not changed. Although the $\mathrm{C}^{1}-\mathrm{H}$ distance in $\mathbf{a} 3$ is $0.7 \AA$ shorter than in a2, it is still very far from the regular $\mathrm{C}-\mathrm{H}$ bond length. The $\mathrm{Rh}-\mathrm{C}^{1}$ distance is lengthened by about 0.1 to $2.22 \AA$ in a3, but the bond is still preserved in the TS. Geometry of the reacting fragment has a double three-centered character, with $\mathrm{H}, \mathrm{C}^{1}$, and C^{2} all interacting with Rh . The barrier height is $6.5 \mathrm{kcal} / \mathrm{mol}$ relative to $\mathbf{a} 2$, and $\mathbf{a} 3$ lies substantially below the initial reactants, $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HB}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{4}$ (a0).

Insertion maintaining C_{s} symmetry results in the complex a4, $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{~B}(\mathrm{OH})_{2}\right]\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$, which is $28.2 \mathrm{kcal} / \mathrm{mol}$ lower than

Figure 3. The critical structures of the $\mathbf{I} .2$ and $\mathbf{I} .3$ mechanisms of the reaction $\mathrm{HB}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$. See Figure 1 for notation.

Figure 4. The overall profiles of the potential energy surface of the reaction $\mathrm{HB}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}-$ $(\mathrm{OH})_{2}$. Labels such as I.1.A refer to different mechanisms, and labels such as a1 refer to transition states and intermediates. The bold curves show the most favorable reaction mechanisms. The dashed curves mean that the transition states between a21 and a10 and between a 18 and a5 were not calculated, but the barriers are expected to be low.
a1. This energy difference is probably attributable to the fact that a $\mathrm{Rh}-\mathrm{C}$ bond is stronger than a $\mathrm{Rh}-\mathrm{H}$ bond. In a4 the ethyl group has an eclipsed conformation, but no agostic interaction between a β-H atom and Rh is recognized. We have found that the staggered ethyl conformation ($\mathbf{a 5)}$ of the complex within C_{s} symmetry is lower than a 4 by $1.2 \mathrm{kcal} / \mathrm{mol}$. TS search

Table 3. Energy Decomposition Analysis of the a2, a16, a19, and b2 Complexes ${ }^{a}$

	DEF										
	structure						$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{H}) \mathrm{BR}$	total	INT	ΔE
$\mathbf{a 2}$	7.5	66.1	73.6	-73.7	-0.1						
$\mathbf{a 1 6}$	0.6	2.2	2.8	-26.6	-23.8						
$\mathbf{a 1 9}$	1.5	10.2	11.7	-31.6	-19.9						
$\mathbf{b 2}$	7.7	26.2	33.9	-67.2	-33.3						

${ }^{a}$ Here all numbers are given in $\mathrm{kcal} / \mathrm{mol}$. DEF and INT are deformation and interaction energies, respectively. ΔE is a binding energy which is calculated as DEF + INT.
without symmetry converged to $\mathbf{a 4}$, and, therefore, $\mathbf{a 4}$ is the TS for CH_{3} rotation. Thus the reaction from a 2 should give the ethyl intermediate a5 with the exothermicity of $29.3 \mathrm{kcal} /$ mol . Geometries of a4 and $\mathbf{a 5}$ are very similar, except for the CH_{3} torsion angle. In a5 the metal atom is still five-coordinated, with equatorial Cl, B, and ethyl in a Y -shape with Cl at the bottom of the Y , as was the case in the hydride ($\mathbf{a} 1)$. Compared to a 2 , the $\mathrm{Rh}-\mathrm{B}$ distance in a 5 is shortened by $0.1 \AA$, suggesting the strengthening of the bond.

Both a4 and a5 can undergo reductive elimination of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}$ $(\mathrm{OH})_{2}$ through the "TS" a6 and a7, respectively, optimized within the C_{s} symmetry. The energy of a7 is $2.2 \mathrm{kcal} / \mathrm{mol}$ lower than that of a6. Therefore, one can suggest a7 to be a real TS, and $\mathbf{a 6}$ to be a second order top with two imaginary frequencies, one for reaction and another for internal rotation of CH_{3}. a7 is a three-center TS , with Rh, B, and C^{2} forming a triangle with the sides of $1.92\left(\mathrm{C}^{2}-\mathrm{B}\right), 2.17\left(\mathrm{Rh}-\mathrm{C}^{2}\right)$, and $2.20(\mathrm{Rh}-\mathrm{B}) \AA$. Beyond the transition state, the process reproduces the initial active catalyst, unsaturated $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$, and the reaction product $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}(\mathbf{a 8})$. The barrier for the reductive elimination is calculated to be very high, $46.7 \mathrm{kcal} / \mathrm{mol}$, reflecting the large endothermicity of $44.7 \mathrm{kcal} / \mathrm{mol}$ of the final step, $\mathbf{a 5} \rightarrow \mathbf{a} 7 \rightarrow$ a8. The exothermicity of the overall reaction $\mathrm{HB}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{4}$ $\rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$ reaction is calculated to be a $31.8 \mathrm{kcal} / \mathrm{mol}$. The reverse reaction of the product $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$ with the free active catalyst $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ to give the stable intermediate a5 has a barrier of only $2 \mathrm{kcal} / \mathrm{mol}$; however, the active catalyst is actually solvated, and the barrier from the solvated catalyst to the TS (a7) could be substantial.

Thus, the reductive elimination of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$ is the ratedetermining step for I.A mechanism. The barrier seem to be too high for the reaction to occur via this mechanism at low temperatures.

Mechanism I.1.B. As shown in Figure 2, mechanism I.1.B starts with migratory insertion of the olefin into the $\mathrm{Rh}-\mathrm{B}$ bond in the olefin complex a2, leading to the intermediate $\mathrm{Rh}(\mathrm{H})$ $\mathrm{Cl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}\right]$, for which different structures will be discussed below. The exothermicity of the insertion process is about $20 \mathrm{kcal} / \mathrm{mol}$, and the activation barrier at the TS (a9) is very small, $0.6 \mathrm{kcal} / \mathrm{mol}$. TS (a9), like (a3), has a double three-centered reaction center, with Rh , two C atoms, and B forming two triangles with the common side, $\mathrm{Rh}-\mathrm{C}^{2}$, which is still short, $2.21 \AA$. The $\mathrm{C}^{1}-\mathrm{C}^{2}$ distance in $\mathbf{a} 9$ is slightly longer than in $\mathbf{a 3}$, and the $\mathrm{C}^{2}-\mathrm{B}$ distance in $\mathbf{a} 9$ is closer to the normal bond length than the $\mathrm{C}-\mathrm{H}$ distance in a 3 . Therefore, $\mathbf{a} 9$ is a later TS, relative to $\mathbf{a 3}$, in accord with the smaller exothermicity of insertion. TS a 9 may also be compared with a7, both being TSs for breakage of a $\mathrm{Rh}-\mathrm{B}$ and formation of a $\mathrm{C}-\mathrm{B}$ bond. The process $\mathrm{a} 2 \rightarrow \mathrm{a} 9 \rightarrow \mathrm{a} 10$ is exothermic, while $\mathrm{a} 5 \rightarrow \mathrm{a} 7 \rightarrow$ a8 is endothermic. Consistent with this difference, a9 is an earlier TS than a7; in a9 the $C^{2}-B$ distance is $0.09 \AA$ longer and the $\mathrm{Rh}-\mathrm{B}$ bond is $0.05 \AA$ shorter than in a7. The barrier for $\mathrm{C}=\mathrm{C}$ insertion into the $\mathrm{Rh}-\mathrm{B}$ bond is significantly lower than that into the $\mathrm{Rh}-\mathrm{H}$ bond.

We have obtained three different optimized structures of Rh $(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}\right]$ within C_{s} symmetry. The structure a10 has an eclipsed $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond with the boron atom syn to Rh at the $\mathrm{Rh}-\mathrm{B}$ distance of $2.845 \AA$, and OH groups are out of the symmetry plane. In the structure $\mathbf{a 1 0}{ }^{\prime}$, the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond is eclipsed, and the entire $\mathrm{B}(\mathrm{OH})_{2}$ fragment is on the symmetry plane, with the $\mathrm{Rh}-\mathrm{B}$ distance of $3.07 \AA$. One of the oxygen atoms coordinates strongly with the $\mathrm{Rh}-\mathrm{O}$ distance of $2.26 \AA$. The structure all has a staggered $\mathrm{C}-\mathrm{C}$ bond with the B atom anti to Rh. a10' is the most stable structure of the three, presumably due to the interaction between Rh and O . a10 is $1 \mathrm{kcal} / \mathrm{mol}$ higher than $\mathbf{a 1 0 ^ { \prime }}$ and is likely to have one imaginary frequency corresponding to rotation of the $\mathrm{B}(\mathrm{OH})_{2}$ fragment around the $\mathrm{C}^{2}-\mathrm{B}$ bond. a11 lies $7.8 \mathrm{kcal} / \mathrm{mol}$ above $\mathbf{1 1 0 ^ { \prime }}$ and is expected to have at least one imaginary frequency corresponding to rotation around the $\mathrm{C}^{1}-\mathrm{C}^{2}$ axis. The intermediates a10 and a10 have $\angle \mathrm{HRhC}^{1}$ of less than 90° and seem to be ready for dehydrogenative reductive elimination or coupling between $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ and H .

Corresponding to three intermediates, three structures differing by position of $\mathrm{B}(\mathrm{OH})_{2}$ have been found for the reductive elimination TS. The TS (a12) with syn B and out-of-plane $\mathrm{B}(\mathrm{OH})_{2}$ is the most favorable, with the barrier of $22.4 \mathrm{kcal} / \mathrm{mol}$ from alo^{\prime}. In spite of possibility of the $\mathrm{Rh}-\mathrm{O}$ interaction with in-plane $\mathrm{B}(\mathrm{OH})_{2}$, $\mathbf{a 1 2}^{\prime}$ is $14.2 \mathrm{kcal} / \mathrm{mol}$ higher in energy than a12. This may be due to the strain of a planar six-membered ring formed by $\mathrm{Rh}, \mathrm{H}, \mathrm{C}^{1}, \mathrm{C}^{2}, \mathrm{~B}$, and O atoms in $\mathrm{al2}^{\prime}$. Therefore, we performed calculations of the transition state without symmetry, starting from the geometry of slightly distorted a12'. The optimization converged to a12. This confirms al2 to be a real transition state. al3 with anti $\mathrm{B}(\mathrm{OH})_{2}$ group is $5.4 \mathrm{kcal} / \mathrm{mol}$ above a12. a12 is a transition state for insertion into the $\mathrm{Rh}-\mathrm{H}$ bond but is later than a3. $\mathrm{Rh}-\mathrm{H}$ and $\mathrm{Rh}-\mathrm{C}$ distances are elongated with respect to those in $\mathbf{a 1 0}^{\prime}$ by 0.07 and $0.17 \AA$, respectively, and the $\mathrm{C}-\mathrm{H}$ distance, $1.32 \AA$, is much shorter than that in $\mathbf{a 3}, 1.78 \AA$. This is not surprising, since the $\mathrm{a} 2 \rightarrow \mathrm{a} 3 \rightarrow \mathrm{a} 5$ reaction is exothermic, while the $\mathbf{a} 10^{\prime}$ $\rightarrow \mathrm{a} 12 \rightarrow \mathrm{a} 14^{\prime}$ reaction is endothermic.

The TS (a12) leads to the product complex $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}{ }^{\circ}$ $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}\right]$. Again, we have considered three different structures of this complex, a14, a14', and a15, among which a14' with in-plane $\mathrm{B}(\mathrm{OH})_{2}$ is the most favorable and lies 52.6 $\mathrm{kcal} / \mathrm{mol}$ lower than the reactants. The complex is stabilized by the $\mathrm{Rh}-\mathrm{O}$ interaction at the $\mathrm{Rh}-\mathrm{O}$ distance of $2.33 \AA$. al4 with out-of-plane $\mathrm{B}(\mathrm{OH})_{2}$ is a $4.1 \mathrm{kcal} / \mathrm{mol}$ higher than a14', and a15 with B atom in anti position is $8.6 \mathrm{kcal} / \mathrm{mol}$ less favorable than a14'. Thus, we expect a14' to be a real local minimum for the product complex. The $\mathrm{Rh}-\mathrm{H}$ distance in a14 and a15 is in the $1.8 \AA$ range, much shorter than $2.3 \AA$ in a14', suggesting that these complexes are stabilized by the interaction of the agostic $\mathrm{C}-\mathrm{H}$ bond with Rh . In going from TS (a12), at first the $\mathrm{Rh}-\mathrm{C}^{1}$ bond is broken and $\mathrm{Rh}-\mathrm{H}$ is elongated from 1.63 to $1.80 \AA$, in the structure a14. Then, rotation of $\mathrm{B}(\mathrm{OH})_{2}$ group leads to further weakening of the $\mathrm{Rh}-\mathrm{H}$ bond and formation of the $\mathrm{Rh}-\mathrm{O}$ chelate bond, while the energy is lowered by $4.1 \mathrm{kcal} / \mathrm{mol}$ to reach $\mathbf{a 1 4} 4^{\prime}$.
a14' dissociates into $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$ (a8) with energy loss of $20.8 \mathrm{kcal} / \mathrm{mol}$ but without a barrier. Because the active catalyst would be solvated, this energy loss would actually be lower. The overall pathway for the mechanism I.B is $\mathrm{a} 0 \rightarrow \mathrm{a} 1 \rightarrow \mathrm{a} 2 \rightarrow \mathrm{a} 9 \rightarrow \mathrm{a} 10^{\prime} \rightarrow \mathrm{a} 12 \rightarrow \mathrm{a} 14^{\prime} \rightarrow \mathrm{a} 8$. The rate-determining step is the reductive elimination of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}$ $(\mathrm{OH})_{2}$ from the alkylhydrido complex, with the activation energy of $22.4 \mathrm{kcal} / \mathrm{mol}$. As will be discussed later, this mechanism turns out to be the most favorable path of reaction 1.

Mechanism I.2. Mechanism I. 2 initiates by coordination of $\mathrm{C}_{2} \mathrm{H}_{4}$ to al at the trans position of the boron atom, cis to the Cl and H atoms. As shown in Figure 3, the coordination complex formed (a16) is stabilized by $23.9 \mathrm{kcal} / \mathrm{mol}$ relative to a1, much lower in energy than the similar coordination complex a2. This large difference in the thermodynamic stability between a16 and $\mathbf{a} \mathbf{2}$ structures comes from the differences in the deformation energy (DEF) of the starting al complex to form a16. As seen in Table 3, the DEF needed to "prepare" geometries of the reactant fragments $\mathbf{a 1}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ is $2.8 \mathrm{kcal} / \mathrm{mol}$, which is much less than that to form $\mathbf{a} 2,73.6 \mathrm{kcal} / \mathrm{mol}$. Opening a wide side angle of a " Y " to form a " T " requires much less energy than opening a narrow top angle of a " Y ". In a16 the $\mathrm{C}-\mathrm{C}$ distance changes little as compared to that in the free $\mathrm{C}_{2} \mathrm{H}_{4}$ molecule, the elongation being only $0.03 \AA$. Meanwhile, the $\mathrm{Rh}-\mathrm{C}$ bond lengths are about $0.3 \AA$ longer than those in a2. Thus, a16 is a π-complex. Our attempts to find a metallocycle structure like a2 have failed; optimization starting from a metallocycle structure converged to the π-complex without barrier. The $\mathrm{Rh}-\mathrm{H}$ and $\mathrm{Rh}-\mathrm{B}$ distances are significantly shorter in a16 than those in $\mathbf{a} 2$.

The catalytic reaction could proceed from a16 by migratory insertion of $\mathrm{C}=\mathrm{C}$ into the $\mathrm{Rh}-\mathrm{H}$ bond. The calculated transition state (a17) has an unexpected structure; the five atoms on the reaction site form three triangles, $\mathrm{RhC}^{2} \mathrm{C}^{1}, \mathrm{RhC}^{1} \mathrm{H}$, and RhBH. Both $\mathrm{Rh}-\mathrm{H}$ and $\mathrm{B}-\mathrm{H}$ distances, 1.97 and $1.57 \AA$, respectively, are short enough for strong interaction. Judging from the $0.4 \AA$ shorter $\mathrm{C}^{1}-\mathrm{H}$ bond length being formed, a17 is a later transition state than a3. The $\mathrm{Rh}-\mathrm{C}^{1}$ bond length is still short, $2.36 \AA$, even shorter than that in a16, but longer than that in a3. The calculated barrier is very high, $56.5 \mathrm{kcal} / \mathrm{mol}$ relative to a16. After clearing the barrier a17, the system comes to the $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2} \mathrm{~B}(\mathrm{OH})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$ complex (a18) which is 4.9 $\mathrm{kcal} / \mathrm{mol}$ higher than a16 and $10.4 \mathrm{kcal} / \mathrm{mol}$ above $\mathbf{a 5}$. In going from al6 to a18 via the transition state (a17) the $\mathrm{Rh}-\mathrm{H}$ and $\mathrm{Rh}-\mathrm{C}^{1}$ bonds are broken, and the $\mathrm{C}^{1}-\mathrm{H}$ bond is created. However, the geometry of al7 suggests this transition state to correspond to a pathway of " σ-bond metathesis", involving coordination of $\mathrm{C}_{2} \mathrm{H}_{4}$ to the metal center followed by coordination of $\mathrm{HB}(\mathrm{OH})_{2}$ to the complex and simultaneous cleavage of the coordination $\mathrm{Rh}-\mathrm{C}^{1}$ bond and the $\mathrm{B}-\mathrm{H}$ bond with formation of the $\mathrm{Rh}-\mathrm{B}$ and $\mathrm{C}-\mathrm{H}$ bonds. a17 looks like a five-center transition state. However, the $\mathrm{Rh}-\mathrm{C}^{2}$ bond is preserved as in a16 and a17, as in the a18 product. Therefore, one can say that al7 is a four-center ($\mathrm{Rh}, \mathrm{C}^{1}, \mathrm{H}, \mathrm{B}$) transition state, similar to the transition state of σ-bond metathesis in the $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2^{-}}$ $\mathrm{Me}+\mathrm{HBcat} \rightarrow \mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{H}+\mathrm{MeBcat}$ reaction. ${ }^{8}$ The barrier, calculated with respect to $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)+\mathrm{HB}$ $(\mathrm{OH})_{2}(\mathbf{a 2 2})$, is $39.5 \mathrm{kcal} / \mathrm{mol}$.

To confirm to what structure the transition state al7 is connected, a16 or a22, we have performed quasi-IRC calculations, optimization of geometry down from a17 using estimated force constants of the transition state and following the eigenvector that corresponds to the imaginary frequency. The calculation leads to dissociation of $\mathrm{HB}(\mathrm{OH})_{2}$. Therefore, a17 is connected with a22, $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)+\mathrm{HB}(\mathrm{OH})_{2}$, but not with a16, and it is indeed the transition state for σ-bond metathesis.

The transition structure a17 is very much ($26.2 \mathrm{kcal} / \mathrm{mol}$) higher than a3. We tried to find another transition state with lower energy for the mechanism I.2, which is similar to a3 and connected with a16 and corresponds to the insertion into $\mathrm{Rh}-\mathrm{H}$ bond. We used a3 with the position of Cl and $\mathrm{B}(\mathrm{OH})_{2}$ exchanged as the initial guess for TS optimization. The energy of this structure is even slightly lower than the energy of a3.

However the TS optimization converged to a17. An explanation can be given by comparison of the resulting complexes a4 and a18. The five-coordinated complex a4 is " Y "-shaped with the poorest donor Cl at the bottom of " Y ", with the equatorial $\mathrm{ClRhC}{ }^{2}, \mathrm{BRhC}^{2}$, and ClRhB angles of $150.9^{\circ}, 81.4^{\circ}$, and 127.7°, respectively. As discussed above and previously, ${ }^{14}$ this is the most stable structure, and those structures with Cl on a top arm of Y are, in general, very unstable. For instance, the complex a4 with switched Cl and $\mathrm{B}(\mathrm{OH})_{2}$ is $49.3 \mathrm{kcal} / \mathrm{mol}$ higher than a4 and, also, $40.1 \mathrm{kcal} / \mathrm{mol}$ higher than a18. Thus, in the optimized structure a18 Cl tries to be at the bottom arm of Y , with the ClRhC^{2} and BRhC^{2} angles of 161.3° and 88.6°, respectively. This small BRhC^{2} angle in a18 forces the ethyl and $\mathrm{B}(\mathrm{OH})_{2}$ groups to be uncomfortably close to each other, for instance with the $\mathrm{B}-\mathrm{H}$ distance $2.42 \AA$. The endothermicity of the a16 \rightarrow a18 step would give a late character to the transition state between them. As a result, the transition state would suffer from the same structural difficulties as a18 does, and the calculated high energy TS (a17) is not even connected to a16. Thus, to get from a16 to a18, the system first has to dissociate $\mathrm{HB}(\mathrm{OH})_{2}$ leading to a22. Then, σ-bond metathesis occurs, via the transition state a17. The process of $\mathrm{HB}(\mathrm{OH})_{2}$ reductive elimination from a16 is endothermic by $17.6 \mathrm{kcal} /$ mol. We tried to find an elimination barrier. However, the TS optimization converged to a22. Apparently, the reverse process, oxidative addition of $\mathrm{HB}(\mathrm{OH})_{2}$ to $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ has no activation energy, similar to the addition of $\mathrm{HB}(\mathrm{OH})_{2}$ to $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$.

Since the structure $\mathbf{a 2 2}, \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4}$, can be obtained directly by addition of olefin to the catalyst, mechanism I. 2 merges at this point with mechanism II, which will be discussed in one of the following sections.

Mechanism I.3. As shown in Figure 3, the initial complex for mechanism I .3 is $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{H}) \mathrm{B}(\mathrm{OH})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{a} 19)$ where the $\mathrm{C}_{2} \mathrm{H}_{4}$ ligand is situated trans to the H atom, cis to Cl and B. The geometry of a19 is in between but closer to that of a16, a π-complex, than that of a3, a metallocycle. The $\mathrm{Rh}-\mathrm{C}$ distances are $0.1 \AA$ shorter than those in $\mathbf{a} 16$ and about $0.2 \AA$ longer than those in a3. The $\mathrm{C}-\mathrm{C}$ bond length is only $0.02 \AA$ longer as compared to that in a16.

The next step is olefin migratory insertion into the $\mathrm{Rh}-\mathrm{B}$ bond. The transition state ($\mathbf{a} 20$) for the process is similar to a17, a four-center TS with relatively short $\mathrm{B}-\mathrm{H}$ and $\mathrm{Rh}-\mathrm{B}$ distances of 2.30 and $2.35 \AA$, respectively. The transition state is late, where the $\mathrm{C}^{2}-\mathrm{B}$ distance is only $1.81 \AA$, the shortest in all the TSs considered that form a C-B bond. Since geometry of a20 is similar to that of a17, we presume that a20 is a transition state for σ-bond metathesis process and is connected with a22. The barrier height is $23.9 \mathrm{kcal} / \mathrm{mol}$. The reaction cannot proceed directly from a19 to the transition state a20; instead, $\mathrm{HB}(\mathrm{OH})_{2}$ reductive elimination has to take place to form $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (a22), without barrier, as discussed in the preceding subsection. At this point mechanism $\mathbf{I} .3$ merges with mechanism II, which will be discussed in the next section.

Mechanism II: Initial Addition of Olefin. As was mentioned above, the initial step of reaction 1 via mechanism $\boldsymbol{\Pi}$ is formation of $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (a22), which is stable relative to reactants by $53.4 \mathrm{kcal} / \mathrm{mol}$, as shown in Figure 3. The $\mathrm{C}-\mathrm{C}$ bond in this complex is $1.452 \AA$, indicating a metallocycle structure. Upon coordination of $\mathrm{HB}(\mathrm{OH})_{2}$ to a22, the reaction can proceed by various pathways. Oxidative addition of borane without barrier leads to the complexes a16 or a19 with energy gain of 17.6 and $13.7 \mathrm{kcal} / \mathrm{mol}$, respectively. a16 and a19 can eliminate $\mathrm{C}_{2} \mathrm{H}_{4}$ losing 23.9 and $20.0 \mathrm{kcal} / \mathrm{mol}$, respectively. After that, the complex a1 is formed, and the reaction continues by
mechanism I. Conversely, as discussed before, a 22 can be formed via pathway I. 2 and I.3.

If oxidative addition of borane to a22 does not occur, σ-bond metathesis takes place, and two different pathways are possible. The pathway II.1, which goes through the transition state (a17) by cleavage of the $\mathrm{B}-\mathrm{H}$ bond and formation of the $\mathrm{C}-\mathrm{H}$ and $\mathrm{Rh}-\mathrm{B}$ bonds, leads to the complex $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{~B}(\mathrm{OH})_{2}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5}\right]$ (a18). The barrier height is $39.5 \mathrm{kcal} / \mathrm{mol}$, relative to $\mathbf{a 2 2}$, and exothermicity of the metathesis process $\mathbf{a} 22 \rightarrow \mathbf{a 1 8}$ is $7.7 \mathrm{kcal} /$ mol . a18 can be transformed to the more favorable isomer a5 by 180° rotation of $\mathrm{C}_{2} \mathrm{H}_{5}$ fragment around the $\mathrm{Rh}-\mathrm{C}^{2}$ bond. The rotational barrier is calculated to be low for the related reaction $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HBH}_{2}+\mathrm{C}_{2} \mathrm{H}_{4},{ }^{19}$ and therefore is not expected to be high for reaction 1. Afterward, a5 can be connected via the transition state $\mathbf{a} 7$ to the a8 products.

Pathway II.2, occurring through the transition state $\mathbf{a 2 0}$ by cleavage of the $\mathrm{B}-\mathrm{H}$ bond and formation of the $\mathrm{C}-\mathrm{B}$ and $\mathrm{Rh}-\mathrm{H}$ bonds, results in the complex $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{H})\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~B}\right.$ $(\mathrm{OH})_{2}$] (a21). The barrier is $23.9 \mathrm{kcal} / \mathrm{mol}$, and exothermicity of the $\mathbf{a} 22 \rightarrow \mathbf{a} 21 \mathrm{step}$ is $1.6 \mathrm{kcal} / \mathrm{mol}$. $\mathbf{a} 21$ is $12-13 \mathrm{kcal} / \mathrm{mol}$ higher than $\mathbf{a} 10$ and $\mathbf{a 1 0}$ and can rearrange to the latter structures by rotation of the $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~B}(\mathrm{OH})_{2}$ fragment around the $\mathrm{Rh}-\mathrm{C}^{1}$ axis. Though the barrier for rearrangements was not calculated, it is expected to be low. After the isomerization, the reaction would be completed by coupling of H and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~B}$ $(\mathrm{OH})_{2}, \mathbf{a 1 0} \mathbf{0}^{\prime} \rightarrow \mathbf{a} 4^{\prime}$ via TS a12, and dissociation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}$ $(\mathrm{OH})_{2}$.

Comparison of Different Mechanisms. As can be confirmed in Figure 4, mechanism I.1.B has been found to be the most favorable pathway for the catalytic $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{4}$ $+\mathrm{HB}(\mathrm{OH})_{2} \rightarrow \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$ reaction. It involves oxidative addition of $\mathrm{HB}(\mathrm{OH})_{2}$ to $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ to give al, coordination of $\mathrm{C}_{2} \mathrm{H}_{4}$ to the complex between H and B ligands to give (a2), insertion of $\mathrm{C}=\mathrm{C}$ into the $\mathrm{Rh}-\mathrm{B}$ bond via TS (a9) to give $\mathbf{a 1 0} 0^{\prime}$, followed by coupling of H and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ or dehydrogenative reductive elimination of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ via TS (a12) to form the product complex $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}\right.$ $(\mathrm{OH})_{2}$] ($\mathbf{a 1 4} 4^{\prime}$) from which finally $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$ is dissociated. Though the final dissociation step requires $20.8 \mathrm{kcal} / \mathrm{mol}$ in the calculations, in solution the regenerated active catalyst is actually solvated and stabilized, and the net energy requirement should be smaller. Therefore, the rate-determining step is the coupling of H and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~B}(\mathrm{OH})_{2}$ with the activation energy of 22.4 $\mathrm{kcal} / \mathrm{mol}$ via TS (a12). Mechanism I.1.A, where the insertion takes place to the $\mathrm{Rh}-\mathrm{H}$ bond, is not facile due to a high barrier of $46.7 \mathrm{kcal} / \mathrm{mol}$ for the coupling of $\mathrm{CH}_{3} \mathrm{CH}_{2}$ and $\mathrm{B}(\mathrm{OH})_{2}$ which is accompanied by immediate dissociation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}(\mathrm{OH})_{2}$. The $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2} \mathrm{HB}(\mathrm{OH})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ complex with $\mathrm{C}_{2} \mathrm{H}_{4}$ between H and Cl ligands (a16) and between B and Cl ligands (a19) are much more stable than a 2 with $\mathrm{C}_{2} \mathrm{H}_{4}$ between B and H . However, transformations of a16 and a19 cannot occur by insertion into the $\mathrm{Rh}-\mathrm{H}$ or the $\mathrm{Rh}-\mathrm{B}$ bond but proceed through borane elimination and σ-bond metathesis processes.
If $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{a} 22)$ complex is formed directly from a0 or via $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{H}) \mathrm{B}(\mathrm{OH})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (a16) or (a19), the reaction could proceed via σ-bond metathesis pathway, and the barriers are $39.5 \mathrm{kcal} / \mathrm{mol}$ for mechanism $I I .1$ and $23.9 \mathrm{kcal} /$ mol for mechanism II.2. Thus, mechanism II. 2 is more preferable than II. 1 and this barrier at TS (a20) is not much higher than the barrier $22.4 \mathrm{kcal} / \mathrm{mol}$ at TS (a12). Therefore, mechanism II.2, starting with $\mathrm{C}_{2} \mathrm{H}_{4}$ coordination and merging to mechanism I.1.B at $\mathbf{a 1 0}^{\prime}$, might be able to compete with mechanism I.1.B starting with initial oxidative addition of

[^7]

Figure 5. The critical structures of the I.1.B mechanism of the reaction $\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{ClRh}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$. See Figure 1 for notation.
borane. In any case, during the catalytic cycle, initial formation of the $\mathrm{C}-\mathrm{B}$ bond is superior to the formation of the $\mathrm{C}-\mathrm{H}$ bond.

IV. Hydroboration of $\mathrm{C}_{2} \mathrm{H}_{4}$ by $\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$

In this section we consider the catalytic reaction:

$$
\begin{align*}
& \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \\
& \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \tag{3}
\end{align*}
$$

$\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ is a cyclic borane and a close analog of 4,4,6-trimethyl-1,3,2-dioxaborinane (TMDB) for which the catalytic hydroboration has been observed experimentally. For this reaction we have studied only mechanism I.1.B, which is the most favorable pathway for hydroboration with a model molecule $\mathrm{HB}(\mathrm{OH})_{2}$. Our main purpose here is to compare the reaction energetics for the real molecule with that for the model system. Energies and geometries of various species are presented also in Tables 1 and 2, respectively. The intermediates and transition states for the reaction are drawn in Figure 5. We maintain the same notation as in the previous sections for corresponding structures with the letter " b " identifying the present system.

The first step of the reaction is oxidative addition of $\mathrm{HBO}_{2^{-}}$ $\left(\mathrm{CH}_{2}\right)_{3}$ to $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ to form b1. As seen in Table 1 the geometries of b1 and a1 are similar, but b1 has larger $\angle \mathrm{ClRhH}$ and $\angle \mathrm{HRhB}$ angles and a smaller $\angle \mathrm{CIRhB}$ angle. The $\mathrm{B}-\mathrm{H}$ bond is broken, and, similar to the $\mathrm{B}(\mathrm{OH})_{2}$ case, we have not found the complex with short $\mathrm{B}-\mathrm{H}$ distance. Exothermicity of $\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ addition, $15.6 \mathrm{kcal} / \mathrm{mol}$, is significantly smaller than that, $47.1 \mathrm{kcal} / \mathrm{mol}$, for $\mathrm{HB}(\mathrm{OH})_{2}$.

When the binding energies in $\mathbf{a l}$ and $\mathbf{b} \mathbf{1}$ are divided into DEF and INT, as in eq 2 , one finds that this large difference comes from the difference in the interaction energy: $87.6 \mathrm{kcal} / \mathrm{mol}$
between deformed $\mathrm{B}(\mathrm{OH})_{2}$ and $[\mathrm{Rh}]$ fragment and $53.2 \mathrm{kcal} /$ mol between deformed $\mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ and $[\mathrm{Rh}]$ fragment. Deformation energies of borane fragments are similar and negligibly small. Deformation energies of the $[\mathrm{Rh}]$ fragment in al and b1 are also close; the energy for $\mathbf{b 1}$ is $1.9 \mathrm{kcal} / \mathrm{mol}$ lower than that for a1. Meanwhile, the $\mathrm{H}-\mathrm{B}$ binding energies in the boranes themselves calculated at the MP2 level differ only by $3.2 \mathrm{kcal} / \mathrm{mol}: 104.2$ and $101.0 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{HB}(\mathrm{OH})_{2}$ and $\mathrm{HBO}_{2}{ }^{-}$ $\left(\mathrm{CH}_{2}\right)_{3}$, respectively. Thus, the strength of the forming $\mathrm{Rh}-\mathrm{B}$ bond has to be very sensitive to the nature of ligands connected to the boron atom. The controversial question about the strength of the $\mathrm{Rh}-\mathrm{B}$ interaction requires a separate careful study theoretically as well as experimentally. ${ }^{20}$

Coordination of $\mathrm{C}_{2} \mathrm{H}_{4}$ to b1 between B and H atoms gives the metallocycle $\mathbf{b 2}$, which is geometrically very close to $\mathbf{a} 2$, with differences in bond lengths not exceeding $0.01 \AA$. Addition of $\mathrm{C}_{2} \mathrm{H}_{4}$ brings $33.3 \mathrm{kcal} / \mathrm{mol}$ of energy lowering, while the corresponding exothermicity for $\mathbf{a} \mathbf{1} \mathbf{a} \mathbf{2}$ is nearly zero. Table 3 shows that the origin of the difference is the much smaller (by $39.9 \mathrm{kcal} / \mathrm{mol}$) deformation energy of $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{H}) \mathrm{BR}$ fragment in b2 than that in a2. Interestingly, in b1 the $\angle \mathrm{ClRhH}$ and $\angle \mathrm{CIRhB}$ angles are 165.0° and 124.0°, and from b1 to b2 deformation of $\angle \mathrm{CIRhH}$ is larger than from a1 to a2, while deformation of $\angle \mathrm{ClRhB}$ from $\mathbf{b 1}$ to $\mathbf{b} \mathbf{2}$ is smaller than from a1 to a2. Therefore, the $\angle \mathrm{CIRhB}$ angle in the complex is significantly more rigid than $\angle \mathrm{CIRhH}$, and deformation of the former is much more "expensive" energetically. Overall, the stability of $\mathbf{b 2}$ with respect to $\mathbf{b 0}$ is almost the same as stability a2 with respect to a0.

The next reaction step, olefin insertion into $\mathrm{Rh}-\mathrm{B}$, occurs via the transition state (b9). While both b9 and a9 are early transition states reflecting similar exothermicity of this step between $\mathrm{HB}(\mathrm{OH})_{2}$ and $\mathrm{HBO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ reactions, the transition state (b9) is slightly later than a9; the Rh-B distance is $0.04 \AA$ longer, and $\mathrm{C}^{2}-\mathrm{B}$ is $0.06 \AA$ shorter in b9. The barrier for the insertion into $\mathrm{Rh}-\mathrm{B}$ is $6.0 \mathrm{kcal} / \mathrm{mol}$, compared to $0.6 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{HB}(\mathrm{OH})_{2}$ reaction. The transition state (b9) is sterically more congested than a9 due to relatively short distances between hydrogens of C^{2} and oxygens of the borane.

We have considered only one configuration for the $\mathrm{RhCl}-$ $\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{H})\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right]$ complex b10, with B in syn position to Rh and the $\mathrm{BO}_{2} \mathrm{C}_{3}$ ring out of the symmetry plane. For HB$(\mathrm{OH})_{2}$ the in-plane a10' configuration was slightly more favorable, but the difference was not significant. Meanwhile, for the $\mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{2}$ complex, $\mathbf{b 1 0}$ ' is expected to be less favorable due to the steric factor. Hence, we have limited our consideration to only one configuration for this complex as well as for the transition state for the coupling of H and borylethyl and the product complex $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right]$. b10 is more stable than b2 by $20.5 \mathrm{kcal} / \mathrm{mol}$, similar to the difference 20.2 $\mathrm{kcal} / \mathrm{mol}$ between a10 and a2. Geometry of b10 is very close to that of its analog a10.
b12 is the transition state for the coupling of H and $\mathrm{C}_{2} \mathrm{H}_{4}-$ $\mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ or the dehydrogenative reductive elimination and complexation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$. The barrier $20.8 \mathrm{kcal} / \mathrm{mol}$ relative to b10 is close to the corresponding value for $\mathrm{HB}(\mathrm{OH})_{2}$ reaction. b12 lies below the final reaction products, $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$ $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ (b8). Geometries of $\mathbf{b} 12$ and $\mathbf{b} 14$ have no large differences from those of a12 and a14, except the $0.05 \AA$ shorter $\mathrm{Rh}-\mathrm{C}^{1}$ distance in $\mathbf{b 1 4}$ as compared to that in a14.

Finally, dissociation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ from b14 leads to the products with the energy loss of $17.7 \mathrm{kcal} / \mathrm{mol}$. Since a structure b14' with in-plane $\mathrm{BO}_{2} \mathrm{C}_{3}$ cycle and $\mathrm{Rh}-\mathrm{O}$ bond might

[^8]be slightly more stable than $\mathbf{b 1 4}$, the endothermicity of the elimination process might be $3-4 \mathrm{kcal} / \mathrm{mol}$ higher. Anyway, the heat of this reaction step is comparable with that for the model $\mathrm{HB}(\mathrm{OH})_{2}$ reaction. In solution, solvating of the regenerated active catalyst will lower this energy loss.

Thus, the entire reaction pathway, $\mathrm{b} 0 \rightarrow \mathrm{~b} 1 \rightarrow \mathrm{~b} 2 \rightarrow \mathrm{~b} 9^{\prime} \rightarrow$ $\mathbf{b 1 0} \rightarrow \mathbf{b 1 2} \rightarrow \mathbf{b 1 4}$, has the coupling of H and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{BO}_{2}\left(\mathrm{CH}_{2}\right)_{3}$ as the rate determining step, with the activation energy of 20.8 $\mathrm{kcal} / \mathrm{mol}$. The profile of potential energy surface for the $\mathrm{HBO}_{2}-$ $\left(\mathrm{CH}_{2}\right)_{3}$ reaction is qualitatively and almost quantitatively the same as the profile of PES for the model reaction of $\mathrm{HB}(\mathrm{OH})_{2}$, considered in the previous section. Therefore, our conclusions in the previous section and here can be extended to the hydroboration reactions with real boranes, such as HBcat or TMDB. Meanwhile, the steric factors for bulkier boranes could destabilize more compact structures, such as b9 and b10, which would increase the small barrier for insertion into the $\mathrm{Rh}-\mathrm{B}$ but would reduce the rate-determining barrier for the coupling of H and the borylethyl group.

V. Concluding Remarks

Mechanism I.1.B has been found to be the most favorable pathway of the catalytic hydroboration of $\mathrm{C}_{2} \mathrm{H}_{4}$ by $\mathrm{HB}(\mathrm{OH})_{2}$ with the model Wilkinson catalyst, $\mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}$. Since the potential energy profile for the I.1.B mechanism for $\mathrm{HBO}_{2}-$ $\left(\mathrm{CH}_{2}\right)_{3}$ is nearly quantitatively the same as that for $\mathrm{HB}(\mathrm{OH})_{2}$, the same conclusion should be applicable for reactions of real boranes experimentally studied. It involves oxidative addition the $\mathrm{B}-\mathrm{H}$ bond of borane to the catalyst, followed by coordination of olefin to the complex between B and H ligands. The reaction further proceeds by insertion of $\mathrm{C}=\mathrm{C}$ into the $\mathrm{Rh}-\mathrm{B}$ bond, followed by the coupling of H and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}$ or dehydrogenative reductive elimination of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}$ to give the product complex and eventual dissociation of the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}$. The activation energy for the last two steps of the mechanism, reductive elimination and dissociation, is calculated to be about $20 \mathrm{kcal} / \mathrm{mol}$. Since in solution the endothermicity for the dissociation would be reduced by solvating of the regenerated catalyst, the coupling of H and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BR}$ is the rate-determining step. Our conclusion agrees with experimental observation of the reductive elimination step is the slowest in overall transformation. ${ }^{2-4}$

The other competitive mechanism (II.2) begins with addition of olefin to the catalyst. The next step is σ-bond metathesis, i.e., coordination of borane to the complex accompanied by simultaneous cleavage of $\mathrm{Rh}-\mathrm{C}$ and $\mathrm{B}-\mathrm{H}$ bonds with formation
of $\mathrm{B}-\mathrm{C}$ and $\mathrm{Rh}-\mathrm{H}$ bonds. After an internal rotation, which does not require high activation energy, dehydrogenative reductive elimination of $\mathrm{C}_{2} \mathrm{H}_{5} B R$ take place. The final steps for mechanism II. 2 coincide with those for mechanism I.1.B, and the rate-determining barrier for $\mathbf{I I} 2$ corresponding to the metathesis process, $23.9 \mathrm{kcal} / \mathrm{mol}$, is not much higher than that barrier for I.1.B, $22.4 \mathrm{kcal} / \mathrm{mol}$. However, along the II. 2 pathway, the system has to overcome both of these barriers.

Mechanisms I. 2 and I.3, merging with II at a22, have the same rate-controlling step as $\boldsymbol{\Pi} .2$, because reductive elimination of borane from a16 and a19 requires lower energy lost, 17.6 and $13.7 \mathrm{kcal} / \mathrm{mol}$, respectively, than the activation energy for the σ-bond metathesis, $23.9 \mathrm{kcal} / \mathrm{mol}$. Hence, mechanism $\mathbf{I} 2$ and I. 3 are also competitive with $\mathbf{\Pi} .2$ and I.1.B.

If the system has a choice for $\mathrm{C}-\mathrm{C}$ bond insertion into $\mathrm{Rh}-\mathrm{B}$ or $\mathrm{B}-\mathrm{H}$ with formation of a $\mathrm{C}-\mathrm{B}$ bond, or to insert into $\mathrm{Rh}-\mathrm{H}$ or $\mathrm{B}-\mathrm{H}$ with formation of a $\mathrm{C}-\mathrm{H}$ bond, the former process is always significantly more advantageous kinetically. Therefore, mechanisms I.1.A and $I I .1$ for the reaction of catalytic hydroboration seem to require high temperatures.

Potential energy surfaces for two reactions considered here appear to be very similar with the potential energy surface calculated for the reaction of catalytic hydroboration of $\mathrm{C}_{2} \mathrm{H}_{4}$ by $\mathrm{BH}_{3}, \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{BH}_{3} \rightarrow \mathrm{RhCl}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{5}-$ $\mathrm{BH}_{2}{ }^{19}$ It means that presence of oxygen atoms in borane does not directly affect the reaction mechanisms studied here. We of course find that O atoms stabilize some intermediate complexes, like a12' and a14', by formation of Rh-O chelate bonds, but their effects on the overall potential energy profile are not evident. We require more studies to understand why $\mathrm{Rh}(\mathrm{I})$-catalyzed olefin hydroboration has been observed only with boranes that contain B-O bonds.

In the present paper, we have not considered some aspects of $\mathrm{Rh}(\mathrm{I})$-catalyzed olefin hydroboration, worthwhile to be studied in future. For instance, another reaction mechanism, involving dissociation of one of the phosphine ligands of the catalyst after oxidative addition of borane and coordination of olefin, is possible, as shown at the top of Scheme 1. Neither have we compared hydroboration reaction of terminal alkenes and highly substituted olefins, although the reaction rate is sensitive to the substitution pattern..$^{2-4}$ Theoretical calculations on these questions are now under way.

Acknowledgment. The authors are grateful to Profs. T. B. Marder and A. H. Hoveyda for stimulating discussions. This work was in part supported by the National Science Foundation.

[^0]: ${ }^{+}$Emory University.
 \# Present address: Emory University.
 ${ }^{8}$ Institute for Molecular Science.

 * Abstract published in Advance ACS Abstracts, October 1, 1994.
 (1) Manning, D.; Noth, H. Angew. Chem., Int. Ed. Engl. 1985, 24, 878.
 (2) Burgess, K.; Ohlmeyer, M. J. J. Chem. Rev. 1991, 91, 1179, and references therein.

[^1]: (3) For leading references see: (a) Evans, D. A.; Fu. G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1988, 110, 6917. (b) Evans, D. A.; Fu. G. C. J. Org. Chem. 1990, 55, 2280. (c) Evans, D. A.; Fu. G. C. J. Am. Chem. Soc. 1991, 113, 4042. (d) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114, 6671. (e) Evans, D. A.; Fu. G. C.; Anderson, B. A. J. Am. Chem. Soc. 1992, 114, 6679. (f) Burgess, K.; Cassidy, J.; Ohlmeyer, M. J. J. Org. Chem. 1991, 56, 1020. (g) Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1991, 56, 1027. (h) Burgess, K.; Ohlmeyer, M. Tetrahedron Lett. 1989, 30, 395. (i) Burgess, K.; Ohlmeyer, M. Tetrahedron Lett. 1989, 30, 5857. (j) Burgess, K.; Ohlmeyer, M. Tetrahedron Lett. 1989, 30, 5861. (k) Burgess, K.; van der Donk, W. A.; Jarstfer, M. B.; Ohlmeyer, J. Am. Chem. Soc. 1991, 113, 6139. (1) Satoh, M.; Nomoto, Y.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1989, 30, 3789. (m) Satoh, M.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1990, 31, 231. (n) Brown, J. M.; LloydJones, G. C. Tetrahedron: Asymmetry 1990, 1, 869. (0) Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 3426. (p) Hayashi, Y.; Matsumoto, Y.; Ito, Y. Tetrahedron: Asymmetry 1991, 2, 601. (q) Matsumoto, Y.; Hayashi, T. Tetrahedron Lett. 1991, 32, 3387. (r) Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1988, 53, 5178. (s) Burgess, K.; van der Donk, W. A.; Ohlmeyer, M. J. Tetrahedron: Asymmetry 1991, 2, 613. (t) Zhang, J.; Lou, B.; Guo, G.; Dai, L. J. Org. Chem. 1991, 56, 1670. (u) Westcott, S. A.; Slom, H. P.; Marder, T. B.; Baker, R. T. J. Am. Chem. Soc. 1992, 114, 8863 . (v) Westcott, S. A.; Taylor, N. J.; Marder, T. B.; Baker, R. T.; Jones, N. J.; Calabrese, J. C. J. Chem. Soc., Chem. Commun. 1991, 304. (w) Baker, R. T.; Ovenall, D. W.; Calabrese, J. C.; Westcott, S. A.; Taylor, N. J.; Williams, I. D.; Marder, T. B. J. Am. Chem. Soc. 1990, 112, 9399. (x) Baker, R. T.; Ovenall, D. W.; Harlow, R. L.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. Organometallics, 1990, 9, 3028 . (y) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. lnorg. Chem. 1993, 32, 2175 . (z) Harrison, K. N.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 9220 . (aa) Burgess, K.; Jaspars, M. Organometallics, 1993, 12, 497.
 (4) (a) Burgess, K.; Donk, W. A.; Kook, A. M. J. Org. Chem. 1991, 56, 2949. (b) Knorr, J. R.; Merola, J. S. Organometallics 1990, 9, 3008. (c) Burgess, K.; van der Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. J. Am. Chem. Soc. 1992, 114, 9350.
 (5) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655.

[^2]: (6) Westcott, S. A.; Marder, T. B.; Baker, R. T. Organometallics 1993, 12, 975.
 (7) Baker, R. T.; Calabrese, J. C.; Westcott, S. A.; Nguyen, P.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 4367.

[^3]: (8) Hartwig, J. F.; Bhandari, S.; Rablen, P. R. J. Am. Chem. Soc. 1994,

[^4]: (9) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
 (10) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
 (11) (a) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, $28,213$. (b) Francl, M. M.; Pietro, W. J.; Henre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
 (12) GAUSSIAN 92; Fresch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzales, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.; Gaussian Inc., Pittsburgh, PA, 1992.
 (13) Koga, N.; Morokuma, K. J. Phys. Chem. 1990, 94, 5454.

[^5]: (14) Daniel, C.; Koga, N.; Han, J.; Fu, X. Y.; Morokuma, K. J. Am.

[^6]: (15) (a) Morokuma, K.; Kitaura, K. In Chemical Application of Atomic and Molecular Electrostatic Potentials; Politzer, P., Truhler, D. G., Eds.; Plenium: New York, 1981. (b) Kitaura, K.; Sakaki, S.; Morokuma, K. Inorg. Chem. 1981, $20,2292$.
 (16) Frish, M. J.; Del Bene, J. E.; Binkley, J. S.; Schaefer, III, H. F. J. Chem. Phys. 1986, 84, 2279.
 (17) Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1993, 115, 6883.
 (18) Sodupe, M.; Bauschlicher Jr., C. W.; Langhoff, S. R.; Partridge, H. J. Phys. Chem. 1992, 96, 2118.

[^7]: (19) Musaev, D. G.; Mebel, A. M.; Morokuma, K. to be published.

[^8]: (20) Rablin, P. R.; Hartwig, J. F.; Nolan, S. P. J. Am. Chem. Soc. 1994, 116, 4121.

